21 Jul

思考:两个椭圆片能粘合成一个立体吗?

前两周又在群里看到一个颇为有趣的问题:两个同样大小的椭圆片可以沿着它们的长轴弯曲,沿着边缘线粘贴,能完美地贴合成一个封闭立体吗?问题来源于知乎《两个椭圆片可否以柱面弯曲边缘完美贴合?》

两个椭圆片粘合图示(截取自知乎上提问的图示)

两个椭圆片粘合图示(截取自知乎上提问的图示)

问题可以用只言片语表达清楚,甚至普通读者都能理解,而问题本身是有一定难度的,这就符合了一个漂亮的问题的条件,所以也就吸引了笔者陆陆续续思考了好多天,最终在昨天算是给出了这类问题通用的列方程思路和数值求解方案,而今天则完成了理论证明,确认两个相同椭圆片总是可以完美贴合

点击阅读全文...

2 Jan

用复数化简二次曲线的尝试

当二次型在二维平面的情况下时,就等价于二次曲线的化简。二次曲线的化简主要用到平移和旋转,这恰好是复数所“擅长”的。因此,以复数为工具来对二次曲线进行化简,似乎是一种很显然的思路。然而,我却没有看到这方面的内容,而且我自己之前也忽略了这一思路。下面我对这个思路进行一点探索。

由于只打算做一些启发性引导,所以在这里只考虑$ Ax^2+2Bxy+Cy^2=1$这种不完全的形式(它不包含抛物线)。

点击阅读全文...

29 Aug

三角半分正方形

印象中我在初一曾从一个美术生好朋友那里学到了一个画椭圆的方法:选取一个矩形,取一组邻边的中点,连接并切除得到的三角形;在剩下的五边形中,继续取邻边中点,连接,切除,得到一个如下图的图形;然后作一个尽可能与下图AG、GH、HI、IJ相切的弧,这个弧就大概为四分之一的椭圆了。

椭圆的美术画法

椭圆的美术画法

点击阅读全文...

8 Jan

三连杆装置曲线方程

本创意装置来自牧夫天文论坛的zhangyf1997同好。

三连杆装置——“鱼”

三连杆装置——“鱼”

结构:
1、A、B为两定点,可看作有刚性杆连接;
2、AC为动力杆,绕点A转动;
3、BD为从动杆,CD为连杆。

长度数据:
1、CD=AB=$\sqrt{2}$;
2、AC=BD=1。
3、E是CD中点

求:E点的轨迹方程(即图中黑色那条,很有趣吧?)

点击阅读全文...

26 Dec

《自然极值》系列——7.悬链线问题

悬链.jpg

约翰与他同时代的110位学者有通信联系,进行学术讨论的信件约有2500封,其中许多已成为珍贵的彩神APP官方网站登入史文献,例如同他的哥哥雅各布以及莱布尼茨、惠更斯等人关于悬链线、最速降线(即旋轮线)和等周问题的通信讨论,虽然相互争论不断,特别是约翰雅各布互相指责过于尖刻,使兄弟之间时常造成不快,但争论无疑会促进彩神APP官方网站登入的发展,最速降线问题就导致了变分法的诞生。

有意思的是,1690年约翰·伯努利的哥哥雅可比·伯努利曾提出过悬链线问题向数学界征求答案。即:

固定项链的两端,在重力场中让它自然垂下,求项链的曲线方程.

吊桥上方的悬垂钢索,挂着水珠的蜘蛛网,电杆间的电线都是悬链线。伽利略最早注意到悬链线,猜测悬链线是抛物线。1691年莱布尼兹、惠更斯以及约翰·伯努利各自得到正确答案,所用方法是诞生不久的微积分。

点击阅读全文...

10 Dec

《自然极值》系列——6.最速降线的解答

通过上一小节的小故事,我们已经能够基本了解最速降线的内容了,它就是要我们求出满足某一极值条件的一个未知函数,由于函数是未知的,因此这类问题被称为“泛分析”。其中还谈到,伯努利利用费马原理巧妙地得出了答案,那么我们现在就再次回顾历史,追寻伯努利的答案,并且寻找进一步的应用。

最速降线-1

最速降线-1

为了计算方便,我们把最速降线倒过来,把初始点设置在原点。在下落过程中,重力势能转化为动能,因此,在点(x,y)处有$\frac{1}{2} mv^2=mgy\Rightarrow v=\sqrt{2gy}$,由于纯粹为了探讨曲线形状,所以我们使g=0.5,即$v=\sqrt{y}$。在点(x,y)处所走的路程为$ds=\sqrt{dy^2+dx^2}=\sqrt{\dot{y}^2+1}dx$,所以时间为$dt=\frac{ds}{v}=\frac{\sqrt{\dot{y}^2+1}dx}{\sqrt{y}}$,于是最速降线问题就是求使$t=\int_0^{x_2} \frac{\sqrt{\dot{y}^2+1}dx}{\sqrt{y}}$最小的函数。

点击阅读全文...

9 Dec

《自然极值》系列——5.最速降线的故事

如果说前面关于这个系列的内容还不能使得读者您感到痛快,那么接下来要讲述的最速降线和悬链线问题也许能够满足你的需要。不过在进入对最速降线问题的理论探讨之前,我们先来讲述一个发生在17世纪的激动人心的数学竞赛的故事。我相信,每一个热爱数学和物理的朋友,都将会为其所振奋,为其所感动。里边渗透的,不仅仅是一次学术的竞争,更是一代又一代的人对真理的追求与探路的不懈精神。

(以下内容来源于网络,彩神APP官方网站登入空间整理)

意大利彩神APP官方网站登入家伽利略在1630年提出一个分析学的基本问题── “一个质点在重力作用下,从一个给定点A到不在它垂直下方的另一点B,如果不计摩擦力,问沿着什么曲线滑下所需时间最短。”这算是这个著名问题的起源了(为什么别人没有想起这个问题呢?所以说大彩神APP官方网站登入家的素质就是思考、创新,要有思想,人没有思想,就和行尸走肉没有什么区别)。可惜的是伽利略说这曲线是圆,但这却是一个错误的答案。

Brachistochrone

Brachistochrone

点击阅读全文...

13 Nov

意犹未尽——继续光学曲线

《为什么是抛物线?——聚光面研究》这篇文章里头,我们从光学性质出发,推导出了符合该光学性质的曲线为抛物线,同时我们也不禁感到了向量分析的美妙。也许有的读者会意犹未尽:圆锥曲线有三种,文章只介绍了一种。那好,在这篇文章里,我们就从另外两个光学性质出发,推导出符合这两个光学性质的曲线(椭圆、双曲线)。

(注:在下面的描述中,橙色加粗向量表示光线,曲线表示反射面。)

一、从一个点发出的光线经过曲线(面)反射后汇集到另外一个点上。

椭圆的光学性质

椭圆的光学性质

点击阅读全文...